CG-WFC: A Hybrid Cyclic-Graph & WFC Method for
Designer-Guided and Replayable Procedural Content Generation

Laurent Voisard
laurent.voisard@mail.concordia.ca
Concordia University
Montréal, QC, Canada

Fabio Petrillo
fabio.petrillo@etsmtl.ca
Ecole de technologie supérieure - ETS Montréal
Montréal, QC, Canada

ABSTRACT

Procedural generation techniques offer powerful ways to produce
varied game environments, but they often struggle to balance de-
signer control with emergent replayability. In this paper, we present
a hybrid generation method that combines the pattern-based con-
straints of Wave Function Collapse (WFC) with the structural ex-
pressiveness of cyclic graph generation. This approach allows de-
signers to define high-level narrative or spatial structures through
graph grammar, while WFC ensures locally coherent and aestheti-
cally consistent layouts. By decoupling global mission flow from
local content assembly, the method enables both fine-grained au-
thoring and significant variability across playthroughs.

KEYWORDS

Procedural Content Generation, Wave Function Collapse, Mission
Graphs, Designer Control, Replayability, Game Level Generation

ACM Reference Format:

Laurent Voisard, Christiano Politowski, Fabio Petrillo, and Yann-Gael Géhéneuc.

2025. CG-WFC: A Hybrid Cyclic-Graph & WFC Method for Designer-Guided
and Replayable Procedural Content Generation. In . ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Procedural content generation (PCG) has become a central tech-
nique in the development of games that emphasise replayability,
scalability, and systemic design [7]. From the dungeon layouts of
early titles like Roguelto the expansive, open worlds of Minecraft?,
procedural methods have allowed developers to produce large
amounts of content efficiently. Among these, dungeon-like struc-
tures have been particularly influential in both research and indus-
try, providing a clear gameplay framework and a flexible canvas
for procedural methods[8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Christiano Politowski
cristiano.politowski@ontariotechu.ca
Ontario Tech University
Oshawa, ON, Canada

Yann-Gael Géhéneuc
yann-gael.gueheneuc@concordia.ca
Concordia University
Montréal, QC, Canada

Figure 1: The CG-WFC tool. On the left, a recipe is loaded
and iterated until complete, producing the mission graph on
the right.

Despite their advantages, procedural methods frequently strug-
gle to balance designer control with variability. Automated systems
can generate vast amounts of content but often fail to reproduce
the pacing, structure, and intentionality found in handcrafted levels.
As noted by van der Linden et al. [8], many dungeon generation
techniques offer either fine-grained structure at the cost of diversity
or high variability with limited control over gameplay flow.

To address this tension, we propose a hybrid procedural genera-
tion method that combines Wave Function Collapse (WFC) with
cyclic graph-based mission structures, CG-WFC. This two-layer
approach separates global mission structure from local spatial in-
stantiation, allowing designers to define progression and rhythm
while still benefiting from procedural variety at the tilemap level.
This method aims to offer both structured authorial intent and
replayable content, particularly suited to genres where mission
structure and exploration are central design pillars, such as role-
playing games or roguelikes.

In the sections that follow, we go over background 2, the method
4, present some early results 5, discuss the results and the current
state of the tool 6, and finally we conclude the paper by going over
the main contributions 7.

! Rogue - Wikipedia ? Minecraft - Wikipedia


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://en.wikipedia.org/wiki/Rogue_(video_game)"
https://en.wikipedia.org/wiki/Minecraft

Conference’17, July 2017, Washington, DC, USA

2 BACKGROUND
2.1 Procedural Content Generation

Procedural content generation is widely used in games to produce
environments, missions, and other game assets through algorithmic
means rather than manual authoring. This enables developers to
scale content production efficiently, reducing reliance on large
teams of level designers. PCG techniques have been applied across a
wide range of genres, from early roguelikes to contemporary open-
world experiences, where procedural methods create large, varied
spaces that enhance replayability and player-driven exploration.

However, while PCG excels at producing content quickly and
at scale, it often lacks the fine-grained control and narrative inten-
tionality of handcrafted environments. Hand-authored levels allow
designers to carefully shape pacing, player experience, and thematic
beats, whereas purely procedural methods tend to focus on struc-
tural feasibility or pattern matching without embedding explicit
design goals. This creates a fundamental tension between automa-
tion and authorial control, which has been widely recognised as a
key challenge in procedural generation research [8].

Various approaches have emerged to address this issue, including
constraint-based generation, semantic tagging, and mixed-initiative
design tools that allow designers to guide algorithmic generation[8].
Our work builds on this trajectory by combining procedurally gener-
ated mission graph structures and WFC, aiming to bridge high-level
design intent with low-level procedural detail.

3 RELATED WORK
3.1 Cyclic Graph Generation

Dormans et al. [2, 3] elaborated a procedural mission generation
technique based on graph grammars, enabling the automatic cre-
ation of mission graphs, a structured sequence of tasks that players
must complete to finish a level. This approach draws inspiration
from classic dungeon design in The Legend of Zelda series, where
players encounter obstacles or puzzles that can only be overcome
by exploring other areas of the world, acquiring key items or abil-
ities, and then returning to unlock previously inaccessible paths.
By encoding such progression patterns into graph transformation
rules, this method allows designers to express high-level structural
motifs such as branching questlines, loops, and parallel objectives.

The generation of complex mission structures is formalised using
graph grammars, a specialised form of generative grammar and
rewrite systems that operate on nodes and edges [5]. In this context,
the mission graph is modelled as a directed graph representing
the logical flow of tasks, challenges, and dependencies required to
complete a level. A simple, linear sequence of objectives can be
progressively transformed into a non-linear structure through a
series of rewrite steps, introducing branching paths, detours, and
interdependencies. One particularly effective technique involves
adding locks and keys, which require players to revisit or explore
alternate branches, turning a straightforward path into a more
engaging, exploratory mission structure (see Figure 3).

Dormans chains multiple rules together, calling this process
Recipes. Each rule in a recipe can be applied in one of three ways: a
fixed number of times, a random number of times within a range,
or to each identified pattern within the target graph of a grammar

Laurent Voisard, Christiano Politowski, Fabio Petrillo, and Yann-Gael Géhéneuc

Figure 2: Designer authored mission graph rules. The left side
of the rules is the lookup pattern, the right side of the rules
is the output. In order from top to bottom: Add a task, add a
key and lock, duplicate key, hide key, move lock towards the
entrance.

rule, similar to L-Systems [6]. In the end, each graph generated by
a recipe will be different but share common elements.

3.2 Wave Function Collapse

Wave Function Collapse (WFC) [4] has emerged as a powerful
procedural generation technique for producing locally coherent
layouts from example data. By learning and reproducing spatial
adjacency patterns, WFC enables designers to generate rich and
visually consistent environments with minimal manual authoring.
It has been widely adopted for tilemap generation, environment



CG-WFC: A Hybrid Cyclic-Graph & WFC Method for Designer-Guided and Replayable Procedural Content Generation

Conference’17, July 2017, Washington, DC, USA

Figure 3: Iterative process of applying rules from a mission graph recipe. First, an entrance and goal are generated, next, a
random value from 8-10 tasks are added. The next step adds 1-3 lock and keys. The following step can duplicate a key 0-1 time.
The next step pulls a task to hide the key further from the main path 3-5 times. The last step moves the lock one room closer to

the entrance 1-3 times.

design, and similar layout problems due to its simplicity and ex-
pressive potential.

Despite these strengths, WFC provides limited control over
global structure. While the algorithm ensures local consistency,
it does not inherently encode higher-level concepts such as pac-
ing, progression, or thematic flow. As a result, levels generated
purely through WFC can lack the intentional rhythm and narrative
framing that hand-authored structures provide.

Several extensions have sought to address these limitations. One
notable example is hierarchical semantic WFC [1], which introduces
an abstraction layer by grouping tiles into semantic categories, for
example: forests, deserts or cities. This allows designers to work

with abstract tiles in an initial pass, which are then refined into
more detailed patterns during a second collapse stage.

4 METHOD

Our approach builds upon the complementary strengths of cyclic
graph generation and WFC by integrating them into a two-layer
procedural generation pipeline. This hybrid structure enables de-
signers to maintain high-level control over mission topology while
delegating the local spatial detail to an example-based generation
process.



Conference’17, July 2017, Washington, DC, USA

We implement a prototype of the hybrid system in a 2d tile-
based environment® using the Godot* game engine. The source
code is publicly available on Github®. For this tool, we implement
the mission graph layer ourselves, referring to the papers from
Dormans et al. [2, 3], and for the WFC, we use the most popular
tool for Godot, which has 424 stars on Github®

4.1 Mission Graph Layer

The first step of our pipeline is to define a mission graph using
cyclic graphs generated via designer-authored graph grammar rules.
Each node can represent rooms, tasks and more, while each edge
keeps track of spatial and logical relationships. Designers can create
patterns such as branching paths, lock and key generation, loops
and more. To systematically create similar levels, designers can
author recipes, which are a set of rules applied one after the other
(Figure 1). Each node can contain metadata such as encounter types
or spatial constraints, which will carry over the WFC pass. Figure
2 lists a few fundamental graph grammar rules in the creation of
our levels.

To create a level from a designer-authored recipe, each rule in
the recipe is applied a random amount from a range onto the graph.
The example from figure 3 shows the process of the recipe iteration.
First, a few tasks are added to create a linear mission of a fixed
length. It then incorporates 1-3 keys and locks, can duplicate them,
and move rooms around to hide keys and move the locks closer to
the entrance. Finally, we apply a force-based layout to the graph in
order to separate nodes from each other.

4.2 WEFC Layer

The second layer uses WFC to generate locally coherent spatial
layouts corresponding to each mission graph node generated in the
previous step. A pattern library is learned from designer authored
samples (Figure 4, encoding adjacency rules implicitly through ob-
served patterns. As a first pass, the generation process will paint
the location of each room in the mission graph as well as its connec-
tions. Once the layout is set, WFC can replace the tile hierarchies
with their appropriate tiles based on the designer examples.

This decoupling between global structure and local generation
allows designers to maintain control over progression and mission
rhythm, while still obtaining high replayability through random
WFC instantiations.

5 RESULTS

Using the process described in section 4.1, we generate a mission
graph from a designer-authored recipe (Figure 5 (a)). Next, we can
draw hierarchical WFC levels[1] of the dungeons (Figure 5 (b)),
rooms and exteriors in a first pass, and then allow WEFC to fill in
the details in the tilemap (Figure 5 (c)). The whole process can
take around ten seconds, and the majority of the time is consumed
by the WFC algorithm, around 9-10 seconds, whereas the mission
graph generation can take up to 100ms. These values are gross
estimations based on personal observations and can vary from

system to system.

3 https://kenney.nl/assets/tiny-dungeon 4 https://godotengine.org/
5 https://github.com/LVoisard/graph-reconstruction-godot.git

6 https://github.com/AlexeyBond/godot- constraint-solving.git

Laurent Voisard, Christiano Politowski, Fabio Petrillo, and Yann-Gael Géhéneuc

Moreover, the outputs produced through this pipeline illustrate
how small variations in the mission graph recipe can lead to sig-
nificant differences in the resulting layouts. For example, altering
the number of tasks or the placement of lock-and-key structures
produces markedly different progression paths while retaining an
overall coherent structure. Similarly, because the mission graph
constrains the semantic layout, multiple WFC instantiations from
the same recipe yield distinct yet structurally consistent dungeons.
This demonstrates one of the method’s key strengths: designers
can shape high-level structure once and obtain a diverse set of
replayable levels without reauthoring content.

Figure 4: Sample input made by a designer used by WFC

6 DISCUSSION

In creating this hybrid approach, we aimed to address two key
design goals in procedural generation:

e Designer Control: The generated mission graphs enable
explicit control over structure, pacing, and rhythm, ensuring
that generated content aligns with designer intent rather
than being purely random.

e Replayability: The combination of mission graphs and
WEC introduces variation at both the structural and local
layout level, increasing the number of unique playthroughs
that can emerge from a single authored mission recipe.

While the preliminary results of the approach meet these ob-
jectives, the method also introduces new challenges. Connectivity
constraints between WFC layouts can become brittle for dense
graphs, requiring careful placement of entry/exit anchors. More-
over, WFC itself remains sensitive to the quality and diversity of
its input patterns; limited or homogeneous samples can lead to
repetitive outputs and reduce replayability.

More critically, while the current system successfully generates
mission graphs and spatial layouts, the output levels are not yet fully
playable. The semantic metadata defined in the mission graph, such
as room functions, encounter types, or key-lock relationships, is not


https://kenney.nl/assets/tiny-dungeon
https://godotengine.org/
https://github.com/LVoisard/graph-reconstruction-godot.git
https://github.com/AlexeyBond/godot-constraint-solving.git

CG-WFC: A Hybrid Cyclic-Graph & WFC Method for Designer-Guided and Replayable Procedural Content Generation

Conference’17, July 2017, Washington, DC, USA

Figure 5: Once the mission graph has been generated (a), it is grossly drawn to the tilemap (b). WFC uses the template as a
constraint and replaces the classes with the appropriate tiles(c), light brown: room, dark brown walls.

currently propagated into the final WFC-generated environment. As
aresult, the generated levels contain the intended structural rhythm
but lack gameplay elements that would make them functionally
meaningful. Integrating this metadata into the spatial layer is a
crucial next step toward making the generated levels interactive
and game-ready.

Another limitation lies in the choice of the WFC generation tool.
The current implementation uses a Godot WFC plugin’, which
enforces full-area tiling rather than the collection of rooms. This
creates unnecessary filler space outside of intended rooms and
corridors, which can greatly hinder generation time depending on
the total extent of the level space. Moreover, the hierarchical feature
in the tool does not account for tile probability, which explains the
abnormal distribution of tiles in the final output compared to the
sample input (See figures 5 and 4). A custom or modified WFC
implementation would be needed to support more fine-grained,
region-specific generation.

Finally, while this approach offers a promising balance between
designer control and replayability, empirical evaluation is still miss-
ing. Future work should investigate how players perceive levels
generated through this hybrid method, including their sense of nar-
rative structure, navigability, and replay value. Likewise, designer
studies could assess how effectively this approach supports author-
ing goals compared to purely handcrafted or purely procedural
workflows.

7 CONCLUSION

Procedural generation systems can produce vast amounts of content
efficiently, but often struggle to replicate the pacing, structure,
and intent of handcrafted levels. This work set out to bridge that

7 https://godotengine.org/

gap, giving designers meaningful control over level structure while
retaining the expressive power of procedural methods.

We presented CG-WFC, a hybrid generation approach that com-
bines Wave Function Collapse with cyclic graph-based mission
structures to balance designer control and replayability. By sepa-
rating global mission structure from local pattern instantiation, the
method preserves authorial intent across structural, spatial, and
thematic layers while supporting varied, replayable layouts. This
makes it particularly suited to genres where mission structure plays
a central role, such as role-playing games.

Future work will focus on integrating mission graph metadata
into WFC outputs to produce fully playable levels with embedded
gameplay semantics, optimising WFC for region-constrained gen-
eration, and conducting empirical studies to evaluate the perceived
structure, navigability, and replay value of the generated content.

REFERENCES

[1] Araka, S., AND BIDARRA, R. Hierarchical semantic wave function collapse. In
Proceedings of the 18th International Conference on the Foundations of Digital Games
(New York, NY, USA, 2023), FDG ’23, Association for Computing Machinery.

[2] Dormans, J. Cyclic generation. In Procedural Generation in Game Design. AK
Peters/CRC Press, 2017, pp. 83-96.

[3] DoRrMANS, J., AND BAKKES, S. Generating missions and spaces for adaptable play
experiences. IEEE Transactions on Computational Intelligence and Al in Games 3, 3
(2011), 216-228.

[4] GumIN, M. Wave Function Collapse Algorithm, Sept. 2016.

[5] REKERS, J., AND SCHURR, A. A graph grammar approach to graphical parsing. In
Proceedings of Symposium on Visual Languages (1995), IEEE, pp. 195-202.

[6] ROZENBERG, G., AND SALOMAA, A. The mathematical theory of L systems, vol. 90.
Academic press, 1980.

[7] SHAKER, N., TOGELIUS, J., AND NELSON, M. J. Procedural content generation in
games.

[8] vaN DERLINDEN, R., LOPES, R., AND BIDARRA, R. Procedural generation of dungeons.
IEEE Transactions on Computational Intelligence and Al in Games 6, 1 (2014), 78-89.


https://godotengine.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Procedural Content Generation

	3 Related Work
	3.1 Cyclic Graph Generation
	3.2 Wave Function Collapse

	4 Method
	4.1 Mission Graph Layer
	4.2 WFC Layer

	5 Results
	6 Discussion
	7 Conclusion
	References

