
CG-WFC: A Hybrid Cyclic-Graph &WFC Method for
Designer-Guided and Replayable Procedural Content Generation

Laurent Voisard

laurent.voisard@mail.concordia.ca

Concordia University

Montréal, QC, Canada

Christiano Politowski

cristiano.politowski@ontariotechu.ca

Ontario Tech University

Oshawa, ON, Canada

Fabio Petrillo

fabio.petrillo@etsmtl.ca

École de technologie supérieure - ÉTS Montréal

Montréal, QC, Canada

Yann-Gael Géhéneuc

yann-gael.gueheneuc@concordia.ca

Concordia University

Montréal, QC, Canada

ABSTRACT
Procedural generation techniques offer powerful ways to produce

varied game environments, but they often struggle to balance de-

signer control with emergent replayability. In this paper, we present

a hybrid generation method that combines the pattern-based con-

straints of Wave Function Collapse (WFC) with the structural ex-

pressiveness of cyclic graph generation. This approach allows de-

signers to define high-level narrative or spatial structures through

graph grammar, while WFC ensures locally coherent and aestheti-

cally consistent layouts. By decoupling global mission flow from

local content assembly, the method enables both fine-grained au-

thoring and significant variability across playthroughs.

KEYWORDS
Procedural Content Generation, Wave Function Collapse, Mission

Graphs, Designer Control, Replayability, Game Level Generation

ACM Reference Format:
Laurent Voisard, Christiano Politowski, Fabio Petrillo, and Yann-Gael Géhéneuc.

2025. CG-WFC: AHybrid Cyclic-Graph&WFCMethod for Designer-Guided

and Replayable Procedural Content Generation. In . ACM, New York, NY,

USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Procedural content generation (PCG) has become a central tech-

nique in the development of games that emphasise replayability,

scalability, and systemic design [7]. From the dungeon layouts of

early titles like Rogue
1
to the expansive, open worlds of Minecraft

2
,

procedural methods have allowed developers to produce large

amounts of content efficiently. Among these, dungeon-like struc-

tures have been particularly influential in both research and indus-

try, providing a clear gameplay framework and a flexible canvas

for procedural methods[8].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The CG-WFC tool. On the left, a recipe is loaded
and iterated until complete, producing the mission graph on
the right.

Despite their advantages, procedural methods frequently strug-

gle to balance designer control with variability. Automated systems

can generate vast amounts of content but often fail to reproduce

the pacing, structure, and intentionality found in handcrafted levels.

As noted by van der Linden et al. [8], many dungeon generation

techniques offer either fine-grained structure at the cost of diversity

or high variability with limited control over gameplay flow.

To address this tension, we propose a hybrid procedural genera-

tion method that combines Wave Function Collapse (WFC) with

cyclic graph-based mission structures, CG-WFC. This two-layer

approach separates global mission structure from local spatial in-

stantiation, allowing designers to define progression and rhythm

while still benefiting from procedural variety at the tilemap level.

This method aims to offer both structured authorial intent and

replayable content, particularly suited to genres where mission

structure and exploration are central design pillars, such as role-

playing games or roguelikes.

In the sections that follow, we go over background 2, the method

4, present some early results 5, discuss the results and the current

state of the tool 6, and finally we conclude the paper by going over

the main contributions 7.

1
Rogue - Wikipedia

2
Minecraft - Wikipedia

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://en.wikipedia.org/wiki/Rogue_(video_game)"
https://en.wikipedia.org/wiki/Minecraft


Conference’17, July 2017, Washington, DC, USA Laurent Voisard, Christiano Politowski, Fabio Petrillo, and Yann-Gael Géhéneuc

2 BACKGROUND
2.1 Procedural Content Generation
Procedural content generation is widely used in games to produce

environments, missions, and other game assets through algorithmic

means rather than manual authoring. This enables developers to

scale content production efficiently, reducing reliance on large

teams of level designers. PCG techniques have been applied across a

wide range of genres, from early roguelikes to contemporary open-

world experiences, where procedural methods create large, varied

spaces that enhance replayability and player-driven exploration.

However, while PCG excels at producing content quickly and

at scale, it often lacks the fine-grained control and narrative inten-

tionality of handcrafted environments. Hand-authored levels allow

designers to carefully shape pacing, player experience, and thematic

beats, whereas purely procedural methods tend to focus on struc-

tural feasibility or pattern matching without embedding explicit

design goals. This creates a fundamental tension between automa-

tion and authorial control, which has been widely recognised as a

key challenge in procedural generation research [8].

Various approaches have emerged to address this issue, including

constraint-based generation, semantic tagging, and mixed-initiative

design tools that allow designers to guide algorithmic generation[8].

Ourwork builds on this trajectory by combining procedurally gener-

ated mission graph structures andWFC, aiming to bridge high-level

design intent with low-level procedural detail.

3 RELATEDWORK
3.1 Cyclic Graph Generation
Dormans et al. [2, 3] elaborated a procedural mission generation

technique based on graph grammars, enabling the automatic cre-

ation of mission graphs, a structured sequence of tasks that players

must complete to finish a level. This approach draws inspiration

from classic dungeon design in The Legend of Zelda series, where

players encounter obstacles or puzzles that can only be overcome

by exploring other areas of the world, acquiring key items or abil-

ities, and then returning to unlock previously inaccessible paths.

By encoding such progression patterns into graph transformation

rules, this method allows designers to express high-level structural

motifs such as branching questlines, loops, and parallel objectives.

The generation of complex mission structures is formalised using

graph grammars, a specialised form of generative grammar and

rewrite systems that operate on nodes and edges [5]. In this context,

the mission graph is modelled as a directed graph representing

the logical flow of tasks, challenges, and dependencies required to

complete a level. A simple, linear sequence of objectives can be

progressively transformed into a non-linear structure through a

series of rewrite steps, introducing branching paths, detours, and

interdependencies. One particularly effective technique involves

adding locks and keys, which require players to revisit or explore

alternate branches, turning a straightforward path into a more

engaging, exploratory mission structure (see Figure 3).

Dormans chains multiple rules together, calling this process

Recipes. Each rule in a recipe can be applied in one of three ways: a

fixed number of times, a random number of times within a range,

or to each identified pattern within the target graph of a grammar

Figure 2: Designer authoredmission graph rules. The left side
of the rules is the lookup pattern, the right side of the rules
is the output. In order from top to bottom: Add a task, add a
key and lock, duplicate key, hide key, move lock towards the
entrance.

rule, similar to L-Systems [6]. In the end, each graph generated by

a recipe will be different but share common elements.

3.2 Wave Function Collapse
Wave Function Collapse (WFC) [4] has emerged as a powerful

procedural generation technique for producing locally coherent

layouts from example data. By learning and reproducing spatial

adjacency patterns, WFC enables designers to generate rich and

visually consistent environments with minimal manual authoring.

It has been widely adopted for tilemap generation, environment



CG-WFC: A Hybrid Cyclic-Graph & WFC Method for Designer-Guided and Replayable Procedural Content Generation Conference’17, July 2017, Washington, DC, USA

Figure 3: Iterative process of applying rules from a mission graph recipe. First, an entrance and goal are generated, next, a
random value from 8-10 tasks are added. The next step adds 1-3 lock and keys. The following step can duplicate a key 0-1 time.
The next step pulls a task to hide the key further from the main path 3-5 times. The last step moves the lock one room closer to
the entrance 1-3 times.

design, and similar layout problems due to its simplicity and ex-

pressive potential.

Despite these strengths, WFC provides limited control over

global structure. While the algorithm ensures local consistency,

it does not inherently encode higher-level concepts such as pac-

ing, progression, or thematic flow. As a result, levels generated

purely through WFC can lack the intentional rhythm and narrative

framing that hand-authored structures provide.

Several extensions have sought to address these limitations. One

notable example is hierarchical semanticWFC [1], which introduces

an abstraction layer by grouping tiles into semantic categories, for

example: forests, deserts or cities. This allows designers to work

with abstract tiles in an initial pass, which are then refined into

more detailed patterns during a second collapse stage.

4 METHOD
Our approach builds upon the complementary strengths of cyclic

graph generation and WFC by integrating them into a two-layer

procedural generation pipeline. This hybrid structure enables de-

signers to maintain high-level control over mission topology while

delegating the local spatial detail to an example-based generation

process.



Conference’17, July 2017, Washington, DC, USA Laurent Voisard, Christiano Politowski, Fabio Petrillo, and Yann-Gael Géhéneuc

We implement a prototype of the hybrid system in a 2d tile-

based environment
3
using the Godot

4
game engine. The source

code is publicly available on Github
5
. For this tool, we implement

the mission graph layer ourselves, referring to the papers from

Dormans et al. [2, 3], and for the WFC, we use the most popular

tool for Godot, which has 424 stars on Github
6

4.1 Mission Graph Layer
The first step of our pipeline is to define a mission graph using

cyclic graphs generated via designer-authored graph grammar rules.

Each node can represent rooms, tasks and more, while each edge

keeps track of spatial and logical relationships. Designers can create

patterns such as branching paths, lock and key generation, loops

and more. To systematically create similar levels, designers can

author recipes, which are a set of rules applied one after the other

(Figure 1). Each node can contain metadata such as encounter types

or spatial constraints, which will carry over the WFC pass. Figure

2 lists a few fundamental graph grammar rules in the creation of

our levels.

To create a level from a designer-authored recipe, each rule in

the recipe is applied a random amount from a range onto the graph.

The example from figure 3 shows the process of the recipe iteration.

First, a few tasks are added to create a linear mission of a fixed

length. It then incorporates 1-3 keys and locks, can duplicate them,

and move rooms around to hide keys and move the locks closer to

the entrance. Finally, we apply a force-based layout to the graph in

order to separate nodes from each other.

4.2 WFC Layer
The second layer uses WFC to generate locally coherent spatial

layouts corresponding to each mission graph node generated in the

previous step. A pattern library is learned from designer authored

samples (Figure 4, encoding adjacency rules implicitly through ob-

served patterns. As a first pass, the generation process will paint

the location of each room in the mission graph as well as its connec-

tions. Once the layout is set, WFC can replace the tile hierarchies

with their appropriate tiles based on the designer examples.

This decoupling between global structure and local generation

allows designers to maintain control over progression and mission

rhythm, while still obtaining high replayability through random

WFC instantiations.

5 RESULTS
Using the process described in section 4.1, we generate a mission

graph from a designer-authored recipe (Figure 5 (a)). Next, we can

draw hierarchical WFC levels[1] of the dungeons (Figure 5 (b)),

rooms and exteriors in a first pass, and then allow WFC to fill in

the details in the tilemap (Figure 5 (c)). The whole process can

take around ten seconds, and the majority of the time is consumed

by the WFC algorithm, around 9-10 seconds, whereas the mission

graph generation can take up to 100ms. These values are gross

estimations based on personal observations and can vary from

system to system.

3
https://kenney.nl/assets/tiny-dungeon

4
https://godotengine.org/

5
https://github.com/LVoisard/graph-reconstruction-godot.git

6
https://github.com/AlexeyBond/godot-constraint-solving.git

Moreover, the outputs produced through this pipeline illustrate

how small variations in the mission graph recipe can lead to sig-

nificant differences in the resulting layouts. For example, altering

the number of tasks or the placement of lock-and-key structures

produces markedly different progression paths while retaining an

overall coherent structure. Similarly, because the mission graph

constrains the semantic layout, multiple WFC instantiations from

the same recipe yield distinct yet structurally consistent dungeons.

This demonstrates one of the method’s key strengths: designers

can shape high-level structure once and obtain a diverse set of

replayable levels without reauthoring content.

Figure 4: Sample input made by a designer used by WFC

6 DISCUSSION
In creating this hybrid approach, we aimed to address two key

design goals in procedural generation:

• Designer Control: The generated mission graphs enable

explicit control over structure, pacing, and rhythm, ensuring

that generated content aligns with designer intent rather

than being purely random.

• Replayability: The combination of mission graphs and

WFC introduces variation at both the structural and local

layout level, increasing the number of unique playthroughs

that can emerge from a single authored mission recipe.

While the preliminary results of the approach meet these ob-

jectives, the method also introduces new challenges. Connectivity

constraints between WFC layouts can become brittle for dense

graphs, requiring careful placement of entry/exit anchors. More-

over, WFC itself remains sensitive to the quality and diversity of

its input patterns; limited or homogeneous samples can lead to

repetitive outputs and reduce replayability.

More critically, while the current system successfully generates

mission graphs and spatial layouts, the output levels are not yet fully

playable. The semantic metadata defined in the mission graph, such

as room functions, encounter types, or key-lock relationships, is not

https://kenney.nl/assets/tiny-dungeon
https://godotengine.org/
https://github.com/LVoisard/graph-reconstruction-godot.git
https://github.com/AlexeyBond/godot-constraint-solving.git


CG-WFC: A Hybrid Cyclic-Graph & WFC Method for Designer-Guided and Replayable Procedural Content Generation Conference’17, July 2017, Washington, DC, USA

Figure 5: Once the mission graph has been generated (a), it is grossly drawn to the tilemap (b). WFC uses the template as a
constraint and replaces the classes with the appropriate tiles(c), light brown: room, dark brown walls.

currently propagated into the finalWFC-generated environment. As

a result, the generated levels contain the intended structural rhythm

but lack gameplay elements that would make them functionally

meaningful. Integrating this metadata into the spatial layer is a

crucial next step toward making the generated levels interactive

and game-ready.

Another limitation lies in the choice of the WFC generation tool.

The current implementation uses a Godot WFC plugin
7
, which

enforces full-area tiling rather than the collection of rooms. This

creates unnecessary filler space outside of intended rooms and

corridors, which can greatly hinder generation time depending on

the total extent of the level space. Moreover, the hierarchical feature

in the tool does not account for tile probability, which explains the

abnormal distribution of tiles in the final output compared to the

sample input (See figures 5 and 4). A custom or modified WFC

implementation would be needed to support more fine-grained,

region-specific generation.

Finally, while this approach offers a promising balance between

designer control and replayability, empirical evaluation is still miss-

ing. Future work should investigate how players perceive levels

generated through this hybrid method, including their sense of nar-

rative structure, navigability, and replay value. Likewise, designer

studies could assess how effectively this approach supports author-

ing goals compared to purely handcrafted or purely procedural

workflows.

7 CONCLUSION
Procedural generation systems can produce vast amounts of content

efficiently, but often struggle to replicate the pacing, structure,

and intent of handcrafted levels. This work set out to bridge that

7
https://godotengine.org/

gap, giving designers meaningful control over level structure while

retaining the expressive power of procedural methods.

We presented CG-WFC, a hybrid generation approach that com-

bines Wave Function Collapse with cyclic graph-based mission

structures to balance designer control and replayability. By sepa-

rating global mission structure from local pattern instantiation, the

method preserves authorial intent across structural, spatial, and

thematic layers while supporting varied, replayable layouts. This

makes it particularly suited to genres where mission structure plays

a central role, such as role-playing games.

Future work will focus on integrating mission graph metadata

into WFC outputs to produce fully playable levels with embedded

gameplay semantics, optimising WFC for region-constrained gen-

eration, and conducting empirical studies to evaluate the perceived

structure, navigability, and replay value of the generated content.

REFERENCES
[1] Alaka, S., and Bidarra, R. Hierarchical semantic wave function collapse. In

Proceedings of the 18th International Conference on the Foundations of Digital Games
(New York, NY, USA, 2023), FDG ’23, Association for Computing Machinery.

[2] Dormans, J. Cyclic generation. In Procedural Generation in Game Design. AK
Peters/CRC Press, 2017, pp. 83–96.

[3] Dormans, J., and Bakkes, S. Generating missions and spaces for adaptable play

experiences. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 216–228.

[4] Gumin, M. Wave Function Collapse Algorithm, Sept. 2016.

[5] Rekers, J., and Schurr, A. A graph grammar approach to graphical parsing. In

Proceedings of Symposium on Visual Languages (1995), IEEE, pp. 195–202.
[6] Rozenberg, G., and Salomaa, A. The mathematical theory of L systems, vol. 90.

Academic press, 1980.

[7] Shaker, N., Togelius, J., and Nelson, M. J. Procedural content generation in

games.

[8] van der Linden, R., Lopes, R., and Bidarra, R. Procedural generation of dungeons.

IEEE Transactions on Computational Intelligence and AI in Games 6, 1 (2014), 78–89.

https://godotengine.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Procedural Content Generation

	3 Related Work
	3.1 Cyclic Graph Generation
	3.2 Wave Function Collapse

	4 Method
	4.1 Mission Graph Layer
	4.2 WFC Layer

	5 Results
	6 Discussion
	7 Conclusion
	References

